Name Date Period

WS 5-1

Exponents and Linear vs. Exponential Growth

Negative Exponents: to evaluate negative exponents, find the reciprocal of the base, and then change the negative exponent to a positive exponent. Example: $2^{-3} = (\frac{1}{2})^3 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2^3} = \frac{1}{8}$

Zero Power: any non-zero base to the zero power (zero as an exponent) is equal to 1. Example: $7^0 = 1$

First Power: any number to the first power (one as an exponent) is equal to the number. Example: $(\frac{1}{5})^1 = \frac{1}{5}$

Evaluate the following exponential expressions.

1. 2 ¹	2. 2 ³	3. 2^{-3}
4. $(\frac{1}{2})^{-3}$	5. $(\frac{1}{3})^0$	6. 4 ⁻³
7. 1.5673 ⁰	8. 3 ⁻¹	9. $(\frac{1}{4})^{-2}$
10. 45 ¹	11. $(-\frac{1}{2})^{-2}$	12. $(-\frac{2}{3})^2$
$13. (-\frac{1}{7})^0$	14. $(-2)^2$	152^2
16. 3 ⁻³	17. 6^{-2}	18. $(\frac{1}{7})^{-2}$
19. $(-\frac{1}{2})^0$	20. 4^3	21. $(\frac{3}{2})^{-1}$

Draw a graph that could represent the situation described. Then, determine if it is a linear or exponential model.

22. A helium balloon is released and it rises into the sky	y.
23. The speed of a ball as it goes down a ramp.	▲ →
24. The population of a city increases each year.	>
25. Each time you send a text, it costs 5 cents.	>
26. The number of contestants in a single-elimination tournament, with a starting number of 128.	>

Determine if the set of data is linear, exponential, or neither.

x 1 2 3 4 5 6 y -4 -2 0 2 4 6	x 2 4 6 8 10 12 y 1 4 16 64 256 1024
29	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x 20 30 40 50 60 y 1 0.4 0.16 0.064 0.0256
31. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
33. x -3 -2 -1 0 1 2 3 y $\frac{1}{2}$ 1 2 4 8 16 32	34. x -3 -2 -1 0 1 2 3 y 11 9 7 5 3 1 -1
35. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Determine if the graph shown is linear, exponential, or neither.

