\qquad Date \qquad Period \qquad

WS 5-1

Exponents and Linear vs. Exponential Growth

Negative Exponents: to evaluate negative exponents, find the reciprocal of the base, and then change the negative exponent to a positive exponent. Example: $2^{-3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2^{3}}=\frac{1}{8}$

Zero Power: any non-zero base to the zero power (zero as an exponent) is equal to 1 . Example: $7^{0}=1$
First Power: any number to the first power (one as an exponent) is equal to the number. Example: $\left(\frac{1}{5}\right)^{1}=\frac{1}{5}$

Evaluate the following exponential expressions.

1.2^{1}	2.2^{3}	$3 \cdot 2^{-3}$
$4 .\left(\frac{1}{2}\right)^{-3}$	5. $\left(\frac{1}{3}\right)^{0}$	6.4^{-3}
$7.1 .5673^{0}$	8.3^{-1}	$9 \cdot\left(\frac{1}{4}\right)^{-2}$
10.45^{1}	$11 \cdot\left(-\frac{1}{2}\right)^{-2}$	$12 \cdot\left(-\frac{2}{3}\right)^{2}$
$13 \cdot\left(-\frac{1}{7}\right)^{0}$	$14 \cdot(-2)^{2}$	$15 \cdot-2^{2}$
16.3^{-3}	$17 \cdot 6^{-2}$	$18 \cdot\left(\frac{1}{7}\right)^{-2}$
$19 \cdot\left(-\frac{1}{2}\right)^{0}$	20.4^{3}	$21 \cdot\left(\frac{3}{2}\right)^{-1}$

Draw a graph that could represent the situation described. Then, determine if it is a linear or exponential model.
22. A helium balloon is released and it rises into the sky.

23. The speed of a ball as it goes down a ramp.

24. The population of a city increases each year.

25. Each time you send a text, it costs 5 cents.

26. The number of contestants in a single-elimination tournament, with a starting number of 128 .

Determine if the set of data is linear, exponential, or neither.

27.		x	1	2	3		4	5	6	28.		2	4		6	8	10	12	
		\boldsymbol{y} -4 -2			0		2	4	6			1	4		16	64	256	1024	
29.			x	-6	-3		0	3		30.		x 20		0	40	50		60	
			y	5	10		15	20				y 1	0	. 4	0.16	0.06		0.0256	
31.	x	-3	-2	-1	0	1	2		3	32.	x	-3	-2	-1		0	1	2	3
	y	14	10	6	2	-2	-6		10		y	-16	-13		-10	-7	-4	-1	2
33.	x	-3	-2	-1	0	1	2		3	34.	x	-3	-2	-1	0	1	2	3	
	y	$1 / 2$	1	2	4	8	16		32		y	11	9	7	5	3	1	-1	
35.	x	-3	-2	-1	0	1	2		3	36.	x	-3	-2	-1	10	1	2	3	
	y	1/27	1/9	1/3	1	3	9		27		y	1	0	-1	-2	-1	0	1	

Determine if the graph shown is linear, exponential, or neither.

